Abstract Submitted for the MAR06 Meeting of The American Physical Society

Spin Glasses at the Bond Percolation Threshold¹ EMILIANO MARCHETTI, STEFAN BOETTCHER, Physics Department, Emory University, Atlanta GA — Low energy excitations for the Edwards-Anderson model on hypercubic lattices at the bond percolation threshold p_c are investigated. At T=0, p_c separates paramagnetic and spin glass phases. At the "edge" of the ordered state, these excitations are characterized by a distinct scaling exponent. This exponent allows to determine the shape of the phase boundary, $T_c(p) \sim (p-p_c)^{\phi}$, for $p \to p_c^+$, which is experimentally measurable in d=3. At p_c , very large spin glass systems can be studied with an exact reduction algorithm² to produce accurate scaling behavior. For more information, see http://www.physics.emory.edu/faculty/boettcher/

¹This work has been supported by grant 0312510 from the Division of Materials Research at the National Science Foundation.

²Europhys. Lett. **67**, 453 (2004)

Emiliano Marchetti Physics Department, Emory University, Atlanta GA

Date submitted: 06 Dec 2005 Electronic form version 1.4