Spin Resolved Current Focusing in InSb Heterostructures

ARUNA DEDIGAMA, DAVID DEEN, SHEENA MURPHY, NITI GOEL, JOEL KEAY, MICHAEL SANTOS, University of Oklahoma, KYOICHI SUZUKI, SEN MIYASHITA, YOSHIRO HIRAYAMA, NTT Basic Research Laboratories — Spin-resolved current focusing has been observed in InSb/AlInSb structures. While InSb has the most significant Rashba and Dresselhaus effects of any of the III-V semiconductors, Dresselhaus effects are expected to dominate in the symmetrically doped structures used here. The double quantum point contact devices were designed with typical dimensions of 0.5 micron which preserve ballistic transport up to 185K as measured in previous experiments. Focusing peaks were observed near the expected values of perpendicular magnetic field; however the first focusing peak was a doublet. With application of a parallel magnetic field the doublet evolved into a singlet as expected for spin resolved focusing.

1This work is supported by the National Science Foundation under grants DMR-0510056 and DMR-0520550.