Quantum phase transition and possible phase separation in ultrathin doubly-connected superconducting cylinders of Al

HAOHUA WANG, NEAL STALEY, BENJAMIN CLOUSER, YING LIU, Department of Physics, Penn State University — Fluxoid quantization demands that the superfluid velocity, v_s, of a doubly-connected superconducting cylinder increase as its diameter, d, decreases, leading to a destructive regime and a quantum phase transition (QPT) in one dimension (1D). Superconductivity is suppressed around half-integer flux quanta even at zero temperature for cylinders with a d less than the zero-temperature superconducting coherence length, $\xi(0)$. We have fabricated ultrathin doubly-connected superconducting cylinders of Al over a wide range of $d/\xi(0)$ ratios, with the smallest cylinder down to 100 nm in diameter. Electrical transport measurements revealed the presence of robust step-like features in resistance vs. temperature curves as the destructive regime is approached. These field-induced step-like features, present only in the smallest cylinders with $d/\xi(0)$ close to or less than 1, are unrelated to sample inhomogeneity or phase slip centers, and are most likely resulted from a phase separation close to the QPT. We have also found that the normal state in the destructive regime becomes less stable as the $d/\xi(0)$ ratio increases, with the resistances at the half-flux quantum suppressed continuously from its full normal-state value. Resistance vs. magnetic field measurements show that the field tuned QPT is very sharp (less than 1G) with little evidence for hysteretic behavior.

Haohua Wang
Department of Physics, Penn State University

Date submitted: 30 Nov 2005

Electronic form version 1.4