Abstract Submitted for the MAR06 Meeting of The American Physical Society

Far \mathbf{IR} Hall Angle Measurements on Single Crystal $Bi_2Sr_2CaCu_20_{8+x}$.¹ GREGORY JENKINS, D.C. SCHMADEL, H.D. DREW, Physics Department, University of Maryland, College Park, MD 20742, GENDA GU, Department of Physics, Brookhaven National Laboratory, Upton, NY 11973 — The far-infrared complex Hall angle was studied in thin optimally doped single crystal $Bi_2Sr_2CaCu_2O_{8+x}$ as a continuous function of temperature from 25 to 300 K and at a discrete set of frequencies in the range of 25 cm^{-1} to 175 cm $^{-1}$ using a heterodyne technique. The real part of the inverse Hall angle obeys a temperature power law, T^n , where n = 1.65 which is consistent with the dc-value. For the three frequencies below 90 cm^{-1} , the Hall frequency is a constant in temperature and frequency to within 20% from T_C up to room temperature. The Hall mass of 2.5 m_e in reasonable agreement with the values found in far IR optical measurements 3.0 m_e, ARPES dispersion results along the (π, π) nodal direction (2.9 m_e), and mid IR Hall measurements (2.8 m_e) where m_e is the bare electron mass. These results will be compared with theoretical predictions.

¹The support of NSF through grant DMR-0303112 is acknowledged.

Howard Drew University of Maryland, College Park, MD 20742

Date submitted: 04 Dec 2005

Electronic form version 1.4