Pump-Probe studies of Carrier Dynamics in bulk ZnO and ZnO epilayers and Nanorods

X. WANG, Y.D. JHO, D.H. REITZE, C. COOK, G.D. SANDERS, C.J. STANTON, Department of Physics, University of Florida, X. WEI, National High Magnetic Field Laboratory, J.K YOO, G.-C. YI, Department of Materials Science and Engineering, Pohang University of Science and Technology — ZnO-based devices are potentially useful as short wavelength emitters and in spintronics applications, yet little is known about the ultrafast relaxation properties of ZnO. We have performed time-resolved differential reflectivity (TRDR) measurements of bulk ZnO, ZnO epilayers and nanorods as a function of temperature and excitation wavelength. Bi-exponential decays of the A and B exciton states are observed with fast (~ps scale) and slower (~50-100 ps scale) components, which depend strongly on excitation wavelength. We find that decay times can be correlated with relaxation channels in the band structure. In addition to their bi-exponential nature, the relaxation times we observe on ZnO epilayers and nanorods are shorter than high quality bulk ZnO, indicating a higher density of defects and impurity states in these samples.

1Supported by the NSF through grant DMR-0325499 and by the NHMFL through an IHRP grant.

Xiaoming Wang
University of Florida

Date submitted: 04 Dec 2005

Electronic form version 1.4