Abstract Submitted for the MAR06 Meeting of The American Physical Society

The loss of the anisotropy in the electrical conductivity in MgB₂ under pressure ULISES ESTEVEZ, PABLO DE LA MORA, Depto. de Fisica, Fac. de Ciencias, UNAM, Mexico — MgB₂ is a multiple band superconductor, with two σ -bands and two π -bands. The σ -bands that are highly anisotropic are the responsible of the superconductivity in this compound. It has been shown that with Sc, C and Al doping the σ -bands reduce their anisotropy, but for the case of Al and C doping the bands fill up and as consequence the number of σ -carriers reduce and disappear which leads to T_c reduction. In this work it is shown that pressure reducing the MgB₂-cell parameters which leads to an increase of the interplane σ orbitals overlap. This leads to an increase of the σ -bands electrical conductivity in the c-direction, in other words, a reduction of the anisotropy of the σ -bands, on the other hand there is no band filling therefore no reduction of σ -carriers. This reduction as function of pressure follows a similar trend as T_c , thus showing that the anisotropy in the σ -bands could be an important factor of the high T_c in MgB₂.

> Gustavo Tavizon Depto. de Fis. y Quimica Teorica, Fac. de Quimica, UNAM, Mexico

Date submitted: 30 Nov 2005

Electronic form version 1.4