The loss of the anisotropy in the electrical conductivity in MgB$_2$ under pressure

ULISES ESTEVEZ, PABLO DE LA MORA, Depto. de Fisica, Fac. de Ciencias, UNAM, Mexico — MgB$_2$ is a multiple band superconductor, with two σ-bands and two π-bands. The σ-bands that are highly anisotropic are the responsible of the superconductivity in this compound. It has been shown that with Sc, C and Al doping the σ-bands reduce their anisotropy, but for the case of Al and C doping the bands fill up and as consequence the number of σ-carriers reduce and disappear which leads to T_c reduction. In this work it is shown that pressure reducing the MgB$_2$-cell parameters which leads to an increase of the interplane σ-orbitals overlap. This leads to an increase of the σ-bands electrical conductivity in the c-direction, in other words, a reduction of the anisotropy of the σ-bands, on the other hand there is no band filling therefore no reduction of σ-carriers. This reduction as function of pressure follows a similar trend as T_c, thus showing that the anisotropy in the σ-bands could be an important factor of the high T_c in MgB$_2$.

Gustavo Tavizon

Depto. de Fis. y Quimica Teorica, Fac. de Quimica, UNAM, Mexico

Date submitted: 30 Nov 2005

Electronic form version 1.4