The Magnetic phase diagram of the spin-chain system $\text{Ca}_{2+x} \text{Y}_{2-x} \text{Cu}_5 \text{O}_{10-\delta}$: Oxygen hole-doping

KEESEONG PARK, Department of Physics, The University of Texas at Austin, JOHN MARKERT, Department of Physics, The University of Texas at Austin — Recently, K. Kudo et al.1 studied the magnetic ground state in the edge-sharing CuO_2 chains in the spin-chain system $\text{Ca}_{2+x} \text{Y}_{2-x} \text{Cu}_5 \text{O}_{10-\delta}$. In that study, the antiferromagnetic transition temperature decreases with increasing x and disappears around $x=1.4$ followed by the appearance of a spin-glass phase at $x=1.5$. We propose that the oxygen content should be included in the hole doping effect by $p = 1/5(x - 2\delta)$ in the spin-chain system. We present x-ray diffraction, magnetic susceptibility, specific heat and iodometric titration measurements2 which indicate that an oxygen deficiency shifts the magnetic features toward higher x. For example, for $x = 1$ samples, the single crystals of Ref.1 are equivalent to our oxygen deficient polycrystalline sample with $\delta \approx 0.5$. Such a composition has an only slightly suppressed Néel temperature, while for nearly fully oxygenated $x = 1$ samples, the antiferromagnetic transition is completely suppressed.3

2This work is supported by the Robert A. Welch Foundation grant No.F-1191 and the National Science Foundation grant No. DMR-0210383
3M. D. Chabot, and J. T. Markert, Physical Review Letters \textbf{86}, 163 (2001)