Two-Qubit Quantum Computing using Pulsed ESR of N@C$_{60}$

GAVIN MORLEY, NHMFL, JOHAN VAN TOL, NHMFL, JINYING ZHANG, Materials Department, Oxford University, KYRIAKOS PORFYRAKIS, Materials Department, Oxford University, ARZHANG ARDAVAN, Clarendon Lab, Oxford University, ANDREW BRIGGS, Materials Department, Oxford University — N@C$_{60}$ is a fullerene molecule containing an atom of nitrogen. The low-temperature decoherence time, $T_2$, can be increased to 215 $\mu$s, which is attractive for quantum information processing applications. The electronic and nuclear spins of the nitrogen atom are good quantum numbers in a strong magnetic field, coupled by the hyperfine interaction. Pulsed ENDOR (electron nuclear double resonance) can be used to initialize, manipulate and measure this two-qubit system. We used dynamic nuclear polarization (DNP) to prepare an initial state in which the nuclear and electronic spins were aligned with the applied field.

Gavin Morley
NHMFL

Date submitted: 30 Nov 2005
Electronic form version 1.4