Effects of Nonaffinity on Jammed Materials

DANIEL VERNON, ANDREA J. LIU, TOM LUBENSKY, Department of Physics and Astronomy, University of Pennsylvania — If an amorphous solid such as a jammed particle system is subjected to an external stress, the induced displacements of internal particles are necessarily nonaffine. Using numerical minimization procedures, we investigate the response to stress of a disordered packing of purely repulsive spheres. We calculate the correlations of the nonaffine part of the displacements of individual particles just above the jamming threshold (point J). We find that these correlations are consistent with those predicted by a continuum theory and verified numerically in simple model random elastic systems.

1 Work supported by the NSF through grant DMR 04-04670.
3 B. DiDonna and T.C. Lubensky, Phys.Rev. E (to be published)