Quantum critical behaviour of heavy Fermion CeNi$_2$Ge$_2$1 BILAL ZOGHBI, Kent State University, ALMUT SCHROEDER, Kent State University, COLLIN BROHOLMS, Johns Hopkins University — Neutron scattering data of CeNi$_2$Ge$_2$ collected at SPINS at NIST will be presented to characterize the magnetic correlations and dynamics close to an antiferromagnetic quantum critical point (AF QCP). The dynamical susceptibility $\chi''(q,E)$ has been measured in a temperature range $0.1\text{K}<T<30\text{K}$. While the q-independent fluctuations remain unchanged for $T<30\text{K}$, the enhanced susceptibility $\Delta\chi''$ close to the wavevector $q=(0.5,0.5,0)$, shows a relaxation rate following the absolute temperature k_BT down to 5K but then remains finite towards the lowest $T = 0.1 \text{ K}$. The Lorentzian linewidth is reduced to about 0.4 meV, a factor of ten smaller than the rate observed in the q-independent spectrum. The energy, q, and T dependence of $\Delta\chi''$ shows characteristics of the fluctuations expected close to an AF QCP in 3 dimensions, stating that CeNi$_2$Ge$_2$ lies beside the AF QCP.

1Work in collaboration with Y. Qiu, D.F. McMorrow, N. Christensen, J. Mydosh, O. Tegus, G. Aeppli, M. Adams. Work supported by NSF DMR 0306766