Abstract Submitted for the MAR06 Meeting of The American Physical Society

Anomalously low tunneling escape rates from the excited states of an inductively-isolated current-biased Josephson junction phase qubit¹ R.M. LEWIS, T.A. PALOMAKI, HANHEE PAIK, S.K. DUTTA, A. PRZYBYSZ, B.K. COOPER, J.R. ANDERSON, A.J. DRAGT, C.J. LOBB, F.C. WELLSTOOD, University of Maryland — We present measurements of an inductively-isolated current-biased Nb/AlOx/Nb Josephson junction quantum bit at 20 mK. Density matrix fits of Rabi oscillations in our system suggest that the tunneling rate (Γ_1) from the first excited state is an order of magnitude lower than expected from a single current-biased junction. Furthermore, measurements of the energy relaxation time, T_1 , through both pulse/decay and thermal population ² techniques only agree if Γ_1 is approximately an order of magnitude lower than our single junction model predicts. To test for low Γ_1 , we use a fast-ramp technique ($\alpha = d(ln\Gamma)/dt > 1/T_1$) to directly measure Γ_1 . We propose that an increase in the Josephson inductance of the qubit junction when in the excited state causes this effective reduction in Γ_1 .

¹Supported by NSF grant #EIA0323261, the NSA, and the Center for Superconductivity Research

 $^2\mathrm{S.}$ K. Dutta et~al. , Phys. Rev. B $\mathbf{70}$ 140502(R) (2004).

Rupert Lewis University of Maryland

Date submitted: 07 Dec 2005

Electronic form version 1.4