Anomally low tunneling escape rates from the excited states of an inductively–isolated current–biased Josephson junction phase qubit

University of Maryland — We present measurements of an inductively-isolated current-biased Nb/AlOx/Nb Josephson junction quantum bit at 20 mK. Density matrix fits of Rabi oscillations in our system suggest that the tunneling rate (Γ_1) from the first excited state is an order of magnitude lower than expected from a single current-biased junction. Furthermore, measurements of the energy relaxation time, T_1, through both pulse/decay and thermal population techniques only agree if Γ_1 is approximately an order of magnitude lower than our single junction model predicts. To test for low Γ_1, we use a fast-ramp technique ($\alpha = d(ln\Gamma)/dt > 1/T_1$) to directly measure Γ_1. We propose that an increase in the Josephson inductance of the qubit junction when in the excited state causes this effective reduction in Γ_1.

1Supported by NSF grant #EIA0323261, the NSA, and the Center for Superconductivity Research