Development of Low-Temperature Scanning Capacitance Microscopy for Measurement of Single Quantum Dots1 GUANGLEI CHENG, Department of Physics and Astronomy, University of Pittsburgh, JEREMY LEVY, Department of Physics and Astronomy, University of Pittsburgh, GILBERTO MEDEIROS-RIBEIRO, Laboratorio Nacional de Luz Sincrotron, COSMQC COLLABORATION2 — Self-assembled single quantum dots are widely considered to be leading candidates for spin-based quantum bits. The characterization of such systems requires local information about both charge and spin degrees of freedom as a function of temperature and magnetic field. We describe an extension of a working low-temperature AFM/optical microscope to enable scanning capacitance measurements of quantum dots. Our system relies on the sensitivity of a microwave resonator to perturbations from the scanning probe (similar to RCA’s CED technology), using a quartz tuning fork with an etched tungsten tip. The expected sensitivity of the instrument (10^{-21} F) is much below the capacitance of a single self-assembled quantum dot (10^{-18} F). To measure the capacitance, we first use the AFM to locate a single quantum dot, and then collect local C-V information using the measured frequency shift of the resonator.

1This work was supported by the DARPA QuIST program (DAAD-19-01-1-0650).
2Center for Oxide Semiconductor Materials for Quantum Computation

Jeremy Levy
Department of Physics and Astronomy, University of Pittsburgh

Date submitted: 30 Nov 2005