Abstract Submitted for the MAR06 Meeting of The American Physical Society

Spectral Signatures of 3_{10} - and α -Helices Revealed by Two-Dimensional Infrared Spectroscopy¹ NIEN-HUI GE, HIROAKI MAEKAWA, Department of Chemistry, University of California at Irvine, CLAUDIO TONIOLO, Department of Chemistry, University of Padova, Italy, QUIRINUS BROXTER-MAN, DSM Research, Life Sciences, Advanced Synthesis and Catalysis, The Netherlands — Femtosecond two-dimensional infrared (2D IR) spectroscopy is applied to the amide I modes of the homo-octapeptide Z-[L-(α Me)Val]₈-OtBu in CDCl₃, TFE and HFIP solutions to acquire 2D spectral signatures that distinguish between 3_{10} and α -helix structures. Suppression of diagonal peaks by controlling polarizations of IR pulses clearly reveals cross-peak patterns that are crucial for structural determination. A doublet feature is observed when the peptide forms a 3₁₀-helix in CDCl₃ and TFE, and when it is at the initial stage of 3_{10} - to α -helix transition in HFIP. In contrast, the 2D IR spectrum shows a multiple peak pattern after the peptide has become an α -helix in HFIP. This is the first report on the experimental 2D IR signature of a 3₁₀-helical peptide. These results for a model octapeptide demonstrate the powerful capability of 2D IR spectroscopy to discriminate between different helical structures.

¹Supported by ACS PRF and NSF

Nien-Hui Ge Department of Chemistry, University of California, Irvine, CA 92697, USA

Date submitted: 30 Nov 2005 Electronic form version 1.4