Dielectric and Photovoltaic Physics in Thin-Film Crystalline Sulfides

RODNEY MCKEE, Oak Ridge National Laboratory, FRED WALKER, Oak Ridge National Laboratory — Solar energy utilization has been the hope and sought-for solution to local energy needs at least since the late 1800’s. In today’s terms, solar energy is one of the few renewable energy sources with the potential to have a major impact on domestic energy independence. There is a rich, but incomplete scientific literature on the underpinning photovoltaic physics of solar cell development. This literature does however, clearly identify a pervasive, unsolved physics problem – deep level electronic states in wide band gap semiconductors quench the electro-optic behavior of solar cells: either p-type or n-type doping is inhibited both of which are required for the basic function of a semiconducting p-n junction solar cell. We will report on our approach towards solving this problem via layer-sequenced stabilization of thin-film photovoltaics that enable symmetric p or n-type doping. We will bring interface phase physics to the synthesis process for sulfur-based chalcogenides to show that the valence and conduction band energy levels as well as defect formation energies in these systems can be systematically modified in wide bandgap photovoltaics.

1Research sponsored by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy at Oak Ridge National Laboratory under contract DE-AC05-00OR22725 with UT-Battelle, LLC.