Abstract Submitted for the MAR06 Meeting of The American Physical Society

Chemically Synthesized FePt Binary Alloy Nanoparticles with Different Shapes¹ L. COLAK, Y. HUANG, M.J. BONDER, G.C. HADJI-PANAYIS, Dept. of Physics and Astronomy, U of Delaware, Newark, DE, USA, D. WELLER, Seagate Technology, Pittsburg, PA,USA — Chemically synthesized FePt nanoparticles are promising candidates for future high density magnetic recording media. In this work, FePt and FePt₃ binary alloy nanoparticles have been synthesized by thermal decomposition of iron pentacarbonyl ($Fe(CO)_5$) and reduction of platinum acetylacetonate (Pt $(acac)_2$) in the presence of oleic acid (OA) and oleyl amine (OY) surfactants at low refluxing temperatures. FePt₃ and FePt nanoparticles were obtained by varying the Fe:Pt molar ratio in the range of 1.4-1.7. With control of the heating rate to the refluxing temperature, nanoparticles with a size of ~ 5 nm and with different shapes were obtained for both compositions. The particles showed very little agglomeration to an annealing temperature of 650° C, as observed using X-Ray Diffraction (XRD) and Transmission Electron Microscopy (TEM). Magnetic measurements show that annealing at 700° C partially transforms the FePt and FePt₃ nanoparticles from the disordered fcc phase to the ordered $L1_0$ and L1₂ phases, respectively. HRTEM and Mossbauer studies will be discussed in terms of the temperature and time dependent evolution of microstructure with annealing.

¹Work supported by NSF DMR-0302544 and Seagate Technology

Levent Colak

Date submitted: 04 Dec 2005

Electronic form version 1.4