Abstract Submitted for the MAR06 Meeting of The American Physical Society

Competing phases in a frustrated magnet: a study with neutron scattering.¹ DAVID HSIEH, Princeton University, YINWAN LI, ZHIMING TAN, ROBERT CAVA, ZAHID HASAN, Princeton University, YIMING QIU, JAE-HO CHUNG, JEFFREY LYNN, NIST — Zero-field magnetic neutron diffraction on the pyrochlore magnet ZnCr₂S₄ reveals successive phase transitions from a paramagnet into a helical ($T_{N1} = 13$ K) then collinear ($T_{N2} = 8$ K) spin ordered state as the system is cooled. This occurs as the system crosses a critical line in J₁-J₂ space, where J₁ and J₂ are the first and second nearest neighbor exchange constants respectively. We report the magnetic field dependence of the dc susceptibility and neutron scattering of ZnCr₂S₄ in the form of a temperature-field phase diagram. We also study the low energy excitation spectrum of ZnCr₂S₄ which was found to be consistent with the J₁-J₂ model.

¹This work is supported by NSF

David Hsieh Princeton University

Date submitted: 30 Nov 2005

Electronic form version 1.4