Abstract Submitted for the MAR06 Meeting of The American Physical Society

Origin of the non-thermal photoresponse in thin films of twophase manganites¹ ANTHONY DAVIDSON III, MASON OVERBY², RA-JEH MUNDLE, GRACE YONG, DAVID COX, ELENA TALANOVA, VERA SMOLYANINOVA, DAVID SCHAEFER, RAJESWARI M. KOLAGANI³, Towson University, TOWSON UNIVERSITY TEAM — Our studies of light-induced resistance changes (photoresponse) in thin films the colossal magnetoresistive manganite material (La,Pr)_{0.67}Ca_{0.33}MnO₃experiments have revealed a non-thermal component of the light-induced resistance change .This non-thermal component is also observed in thin films of oxygen deficient La_{0.67}Ca_{0.33}MnO₃. The common feature of both these material systems is the co-existence of metallic and insulating phases. Our results indicate that this component may be associated with the light-induced resistance decrease in the insulating regions through an electronic mechanism. Previous studies have shown insulator-metal transitions induced by magnetic fields as well as electric fields in these materials. We will present our studies of the correlation of the observed non-thermal photoresponse with magnetoresistance as well as current-voltage characteristics.

¹Support from Research Corporation Grant # 443158, NSF MRI # 523176 and Towson University /FCSM Undergraduate Research Grants are acknowledged ²Currently at Physics Dept, Purdue University

³Formerly M. Rajeswari

Rajeswari Kolagani Towson University

Date submitted: 19 Dec 2005 Electronic form version 1.4