Origin of the non-thermal photoresponse in thin films of two-phase manganites

ANTHONY DAVIDSON III, MASON OVERBY, RAJJEH MUNDLE, GRACE YONG, DAVID COX, ELENA TALANOVA, VERA SMOLYANINOVA, DAVID SCHAEFER, RAJESWARI M. KOLAGANI, Towson University, TOWSON UNIVERSITY TEAM — Our studies of light-induced resistance changes (photoresponse) in thin films the colossal magnetoresistive manganite material \((\text{La,Pr})_{0.67}\text{Ca}_{0.33}\text{MnO}_3\) experiments have revealed a non-thermal component of the light-induced resistance change. This non-thermal component is also observed in thin films of oxygen deficient \(\text{La}_{0.67}\text{Ca}_{0.33}\text{MnO}_3\). The common feature of both these material systems is the co-existence of metallic and insulating phases. Our results indicate that this component may be associated with the light-induced resistance decrease in the insulating regions through an electronic mechanism. Previous studies have shown insulator-metal transitions induced by magnetic fields as well as electric fields in these materials. We will present our studies of the correlation of the observed non-thermal photosresponse with magnetoresistance as well as current-voltage characteristics.

1Support from Research Corporation Grant # 443158, NSF MRI # 523176 and Towson University /FCSM Undergraduate Research Grants are acknowledged
2Currently at Physics Dept, Purdue University
3Formerly M. Rajeswari

Rajeswari Kolagani
Towson University

Date submitted: 19 Dec 2005

Electronic form version 1.4