From ballistic transport to tunneling in electromigrated ferromagnetic breakjunctions KIRILL BOLOTIN, F. KUEMMETH, A.N. PASUPATHY, D.C. RALPH, Cornell University — We fabricate ferromagnetic constrictions whose cross section can be reduced gradually from $100 \times 30 \text{ nm}^2$ to the atomic scale and eventually to the tunneling regime by means of electromigration. The contacts are attached to non-magnetic substrates and are measured at 4.2 K, so they are much more mechanically stable than previous room-temperature studies. We measure magnetoresistances (MR) < 3% for contacts < 400 Ω, consistent with previous experiments. As the contact diameter is reduced in the range 400 Ω - 25 kΩ, we observe reproducible non-monotonic changes in the MR. We find first a minimum in the MR and sometimes a change in sign to small negative values, and then a strongly increasing positive MR as the contact approaches the atomic scale ($\sim 25 \text{ kΩ}$). For near-atomic-sized constrictions the maximum MR is 80%. Measurements as a function of the direction of applied magnetic field allow us to separate the contribution of anisotropic magnetoresistance from the MR due to a domain wall. In the tunneling regime the MR fluctuates over a wide range, -10% to 85%, even for small changes in the atomic structure in a single device.

Kirill Bolotin

Date submitted: 30 Nov 2005

Electronic form version 1.4