Abstract Submitted for the MAR06 Meeting of The American Physical Society

Thermoelectric properties of Na_{0.68}CoO₂ on a 2D triangular lattice MICHAEL R. PETERSON, JAN O. HAERTER, B. SRIRAM SHASTRY, University of California Santa Cruz — Na_xCoO₂ at x = 0.68 is a material with important and interesting thermopower. Using a new formalism for computing thermal response functions, via the response to dynamical temperature gradients, in the high frequency limit a nearly frequency independent term is identified for the thermopower S^* , the Lorentz ratio L^* , and the dimensionless figure of merit Z^*T . We calculate, via exact diagonalization for small systems, S^* , L^* , and Z^*T , at all temperatures for the *t-J* model on a 2D triangular lattice exploring the model parameters relevant to the experiments by I. Terasaki *et al*, (PRB **56**, R12685 (1997)) and Y. Wang *et al*, (Nature **423**, 425 (2003)). Our objective is to understand the (large) magnitude of the thermopower, and its remarkable sensitivity to a magnetic field. We also consider the hypothetical and interesting case of the opposite sign of hopping $t \to -t$.

> Michael Peterson University of California Santa Cruz

Date submitted: 30 Nov 2005

Electronic form version 1.4