Photodissociation dynamics of ethyl ethynyl ether: A ketenyl radical precursor

MARIA KRISCH, JOHANNA MILLER, LAURIE BUTLER, University of Chicago, HONGMEI SU, RICHARD BERSOHN
1, Columbia University, JINIAN SHU, Lawrence Berkeley National Laboratory — We investigate the photodissociation dynamics of ethyl ethynyl ether at 193.3 nm with crossed laser-molecular beam photofragment translational spectroscopy and laser-induced fluorescence. We establish ethyl ethynyl ether as the first clean precursor to the ketenyl radical, a key species in combustion reactions. One major bond fission channel was observed for the system, cleavage along the HCCO-C$_2$H$_5$ bond, leading to ground state C$_2$H$_5$ (ethyl) radicals and HCCO (ketenyl) radical products in two distinct electronic states. We observed neither cleavage of the other C-O bond nor molecular elimination to form C$_2$H$_4$ + CH$_2$CO (ketene). Ketenyl radicals formed in the higher recoil kinetic energy channel could be either $\tilde{X}(^2A^\prime\prime)$ or $\tilde{A}(^2A^\prime)$ state ketenyl radical. We assign the lower recoil kinetic energy channel to the spin forbidden $\tilde{a}(^4A^\prime\prime)$ state of the ketenyl radical, reached through intersystem crossing. Laser-induced fluorescence from the ketenyl radical peaks after a 20 μs delay, indicating that it is formed with a significant amount of internal energy and subsequently relaxes to the lowest vibrational level of the ground electronic state, a result consistent with the product assignment.

1Deceased

Maria Krisch
University of Chicago

Date submitted: 30 Nov 2005

Electronic form version 1.4