Structural symmetry of Cd$_2$Re$_2$O$_7$ from nonlinear optics

JESSE C. PETERSEN, MICHAEL D. CASWELL, J. STEVEN DODGE, Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada, JIAN HE1, DAVID MANDRUS, Department of Physics and Astronomy, The University of Tennessee, Knoxville and Solid State Division, Oak Ridge National Laboratory — Cd$_2$Re$_2$O$_7$, a superconducting metallic pyrochlore, undergoes a second-order structural phase transition at 200 K from a cubic to tetragonal lattice. Landau theory predicts that any second-order cubic-to-tetragonal phase transition must also possess an order parameter associated with broken inversion symmetry. By observing optical second-harmonic generation, we provide a direct demonstration that the 200 K transition in Cd$_2$Re$_2$O$_7$ involves broken inversion symmetry. Moreover, we have used the polarization dependence of SHG to refine the crystal structure. We find that the low-temperature crystal symmetry is that of the $F42m$ space group.

1Now with Department of Physics and Astronomy, Clemson University, Clemson, SC

Jesse C. Petersen
Simon Fraser University

Date submitted: 19 Dec 2005