Analysis of band-gap formation in squashed armchair CNTs

H. MEHREZ, A. SVIZHENKO, M. P. ANANTRAM, Mail Stop: 229-1, Center for NanoTechnology and NASA Advanced Supercomputing Division, NASA Ames Research Center, Moffett Field, California 94035-1000, M. ELSTNER, T. FRAUENHEIM, theorethische Physik, Universitat Paderborn, D-33098 Paderborn, Germany — The electronic properties of squashed arm-chair CNTs are modeled using constraint free density functional tight binding molecular dynamics simulations. Independent from CNT diameter, squashing path can be divided into three regimes. In the first regime, the CNT deforms with negligible force. In the second one, there is significantly more resistance to squashing with the force being $\sim 40 - 100$ nN/per CNT unit cell. In the last regime, the CNT looses its hexagonal structure resulting in force drop-off followed by substantial force enhancement upon squashing. We compute the change in band-gap (E_g) as a function of squashing and our main results are: (i) E_g initially opens due to interaction between atoms at the top and bottom sides of CNT. The $\pi -$orbital approximation is successful in modeling the E_g opening at this stage. (ii) In the second regime of squashing, large $\pi - \sigma$ interaction at the edges becomes important, which can lead to E_g oscillation. (iii) Contrary to a common perception, nanotubes with broken mirror symmetry can have zero E_g. (iv) All armchair nanotubes become metallic in the third regime of squashing.[Phys. Rev. B 71, 155421 (2005)]

H. Mehrez

Date submitted: 06 Jan 2006

Electronic form version 1.4