Abstract Submitted for the MAR06 Meeting of The American Physical Society

Transport of GaAs two-dimensional holes in strong Coulomb interaction regime JIAN HUANG, D.C. TSUI, Princeton University, L.N. PFEIF-FER, K.W. WEST, Bell Labs, Lucent Technologies — We report experimental findings on the 2D holes in a GaAs/AlGaAs heterojunction insulated-gate field-effect transistor in the strong interaction regime $(E_{ee} >> E_F, kT)$ with the carrier densities (p) varying from $7 \times 10^9 \ cm^{-2}$ to $7 \times 10^8 \ cm^{-2}$. Though the temperature dependence of the resistivity (ρ) resembles that observed in typical 2D Metal-to-Insulator Transition (MIT), there are two things strikingly different. First, for each density, a kink/dip appears in the T-dependence of the conductivity (σ) around a characteristic temperature which we call T_c . In the T_c -p relation, there is a sudden change at a characteristic density which is the same as the critical density p_c where the apparent MIT is observed. The linear T_c -p at high densities suggests that T_c s for $p > p_c$ correspond to the Fermi temperature T_F s. However, T_c shows little pdependence at $p < p_c$ $(p_c = 4 \times 10^9 \ cm^{-2})$. Second, T_c divides the σ -T into a linear part for $T > T_c$ and a power-law part for $T < T_c$. The σ is finite at the base temperature of 35mK even for the lowest density $7 \times 10^8 \ cm^{-2}$. These results rule out the possibility of hopping transport, or the insulator of a pinned Wigner crystal.

> Jian Huang Princeton University

Date submitted: 23 Dec 2005

Electronic form version 1.4