Observation of two distinct energy scales in the magnetization measurements of the anisotropic antiferromagnet TmAgGe

ANA LIMA, NHMFL - LANL, PAUL GODDARD, Clarendon Laboratory, Oxford University, Oxford, UK, JOHN SINGLETON, NHMFL - LANL, EMILIA MOROSAN, SERGEY BUD’KO, PAUL CANFIELD, Dept. of Phys. & Astronomy, ISU and Ames Laboratory — TmAgGe is an antiferromagnet \((T_N = 4.2 \, \text{K})\) that crystallizes in a variant of the hexagonal Fe\(_2\)P structure (three Tm atoms per unit cell). We have studied the magnetization of the TmAgGe single crystals in fields \(\mu_0 H\) of up to 65 T as a function of the field orientation and the temperature \(T\). With \(\mathbf{H}\) in the basal \(ab\)-plane, a number of metamagnetic transitions are observed for \(\mu_0 H < 5 \, \text{T}\) and \(T < T_N\). However, when \(\mathbf{H} \parallel c\), three steps in the magnetization occur between 30 and 35 T, persisting to \(T \approx 60 \, \text{K}\). On tilting \(\mathbf{H}\) away from \(c\), both sets of features (high-field steps and low-field metamagnetism transitions) are seen, showing that they arise from two distinct mechanisms. The dependence of the high-field steps on \(T\) and field orientation suggests that they are associated with crystalline electric field (CEF) level crossing; the CEF confines the moments to the \(ab\)-plane. By contrast, it is the rearrangement of the moments within the basal plane that gives to the low-field metamagnetic transitions. To the best of our knowledge, TmAgGe is the first intermetallic system in which these two energy scales (CEF and in-plane exchange) can be unambiguously distinguished in this way.

Ana Lima
NHMFL - Los Alamos National Laboratory

Date submitted: 04 Dec 2005

Electronic form version 1.4