Non-Fermi liquid and pairing in electron-doped cuprates1 AN-
DREY CHUBUKOV, University of Wisconsin, PAVEL KROT Kov, University of
Maryland — In electron-doped cuprates near optimal doping we show that in the
normal state the fermionic self-energy has a non-Fermi liquid form leading to pec-
culiar frequency dependencies of the conductivity and the Raman response. We
solve the pairing problem and demonstrate that T_c is determined by the curvature
of the Fermi surface, and the pairing gap $\Delta(k, \omega)$ is strongly non-monotonic along
the Fermi surface. The normal state frequency dependencies, the value of $T_c \sim 10K$
and the k-dependence of the gap agree with the experiment.

1Supported by NSF DMR 0240238.