Ultrafast lattice dynamics of FeRh

D.A. WALKO, E.C. LANDAHL, JIN WANG, Argonne National Laboratory, J.-U. THIELE, E.E. FULLERTON, Hitachi Global Storage Technologies — FeRh undergoes magnetic and structural phase transitions at \(\sim 100^\circ \) C where a transition from antiferromagnetic to ferromagnetic orders occurs upon heating. Commensurate with this magnetic transition is a \(\sim 1\% \) expansion in the lattice parameter. Recent optical measurements have shown that the magnetic transition can be quite fast, i.e., on the picosecond or sub-picosecond time scales [1,2]. We have used ultrafast x-ray diffraction techniques at the Advanced Photon Source to probe the speed of the corresponding structural transition. An epitaxial FeRh thin film on a MgO(001) substrate was driven through the phase transition by ultrafast laser excitation, and the response of the lattice was directly observed via picosecond-time-resolved x-ray diffraction. The temporal evolution of the FeRh lattice is reported as a function of laser fluence. [1] J.-U. Thiele et al., Appl. Phys. Lett. 85, 2857 (2004). [2] G. Ju et al., Phys. Rev. Lett. 93, 192301 (2004).

1Use of the Advanced Photon Source was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. W-31-109-Eng-38.

Donald Walko
Argonne National Laboratory

Date submitted: 30 Nov 2005