Abstract Submitted for the MAR06 Meeting of The American Physical Society

Fluctuations of Pb/Si(111) Domain Boundaries¹ WILLIAM CULLEN, Department of Physics and MRSEC, University of Maryland, DANIEL DOUGHERTY², Department of Chemistry, University of Pittsburgh, MASA ISHIGAMI, Department of Physics and MRSEC, University of Maryland, ELLEN WILLIAMS, Department of Physics and MRSEC, University of Maryland — We have used variable-temperature scanning tunneling microscopy to study fluctuations of a 1D interface — the boundary between two coexisting surface phases. We have prepared Pb/Si(111) surfaces that consist of high-density (1×1) -Pb domains coexisting with a lower-density $\sqrt{3} \times \sqrt{3} - R30^{\circ}$ -Pb phase. The domain boundaries between these phases fluctuate at moderate temperatures, allowing direct observation with STM. Measurement of the temporal correlation function for the fluctuating boundary between 525 K and 625 K allows determination of the mass transport mechanisms below and above the onset of thermal desorption of the (1×1) phase. In the desorption regime, our measured dynamical exponent of 1/2 provides microscopic confirmation that fluctuations of the (1×1) boundaries occur via exchange of mass with a 2D adatom gas on the $\sqrt{3} \times \sqrt{3}$ phase, consistent with the zeroth-order desorption kinetics inferred from macroscopic measurements.

¹Supported by UMD-NSF-MRSEC ²Present Address

William Cullen Department of Physics and MRSEC, University of Maryland

Date submitted: 30 Nov 2005

Electronic form version 1.4