Fluctuations of Pb/Si(111) Domain Boundaries

WILLIAM CULLEN, Department of Physics and MRSEC, University of Maryland, DANIEL DOUGHERTY, Department of Chemistry, University of Pittsburgh, MASA ISHIGAMI, Department of Physics and MRSEC, University of Maryland, ELLEN WILLIAMS, Department of Physics and MRSEC, University of Maryland — We have used variable-temperature scanning tunneling microscopy to study fluctuations of a 1D interface — the boundary between two coexisting surface phases. We have prepared Pb/Si(111) surfaces that consist of high-density (1 × 1)-Pb domains coexisting with a lower-density \(\sqrt{3} \times \sqrt{3} - R30^\circ \)-Pb phase. The domain boundaries between these phases fluctuate at moderate temperatures, allowing direct observation with STM. Measurement of the temporal correlation function for the fluctuating boundary between 525 K and 625 K allows determination of the mass transport mechanisms below and above the onset of thermal desorption of the (1 × 1) phase. In the desorption regime, our measured dynamical exponent of 1/2 provides microscopic confirmation that fluctuations of the (1 × 1) boundaries occur via exchange of mass with a 2D adatom gas on the \(\sqrt{3} \times \sqrt{3} \) phase, consistent with the zeroth-order desorption kinetics inferred from macroscopic measurements.

1Supported by UMD-NSF-MRSEC
2Present Address