Monitoring the Motion of Charge Carriers in the Integer Quantum Hall Bulk with a Single Electron Transistor

LEE FARINA, ÇAGLIYAN KURDAK, Physics Department, University of Michigan, Ann Arbor, MI, MAN-SOUR SHAYEGAN, Department of Electrical Engineering, Princeton University, Princeton, NJ — Using an Al/AlO\textsubscript{x}/Al single electron transistor on top of an antidot etched into a GaAs/AlGaAs heterostructure containing a two-dimensional electron gas, we studied the quantum Hall system in the middle of the $\nu=2$ plateau. In this highly insulating regime, oscillations in single electron transistor resistance indicate that the charges in the system adjust slowly (\sim 1 hour) to changes in the back gate voltage or magnetic field. We find that after a small increase in magnetic field an excess of electrons leave the bulk. Moreover, the presence of the etched antidot under the SET creates a small but clear discrepancy between behavior after a change in magnetic field and change in back gate voltage indicating charging of the antidot after a change in magnetic field. When the antidot is accounted for we find the expected ratio of 2 electrons/flux quanta at $\nu=2$. We also present the time dependence of the charge equilibration for 18 mK to 280 mK. Bulk conductivities in the range of 10^{-18}-10^{-18} Ω^{-1} are obtained from this measurement and compared to conductivities obtained from lock-in measurements at high temperatures (1-10 K).

Lee Farina
University of Michigan, Ann Arbor, MI

Date submitted: 30 Nov 2005

Electronic form version 1.4