Abstract Submitted for the MAR06 Meeting of The American Physical Society

Magnetization curves in underdoped cuprates measured at low T in fields up to 45 Tesla LU LI, YAYU WANG¹, Physics Department, Princeton University, MIKE NAUGHTON, Boston College, S. ONO, YOICHI ANDO, Central Research Inst., Electric Power Industry, Tokyo, NAI PHUAN ONG, Physics Department, Princeton University — Torque magnetometry is capable of resolving the weak diamagnetic which extends to temperatures $T \gg T_c$ in hole-doped cuprate crystals. Recently, we reported¹ that the magnetization M above T_c scales accurately as the Nernst signal e_N and remains robust to fields of 33 T. The results strongly support the scenario in which thermally created vortices destroy long-range phase coherence at T_c . We have extended these studies to explore the fluctuation magnetization to 45 T in underdoped LSCO and Bi 2201 in a series of samples doped near the critical value $x_c \sim 0.055$. We investigate the loss of phase coherence as we decrease x below x_c keeping T as low as 0.5 K. We use the M-H curves to explore how singular phase fluctuations occur as superfluidity is destroyed when x approaches the insulating Mott limit at low T.

*Supported by NSF grant (DMR 0213706).

1. Yayu Wang et al., Phys. Rev. Lett., **95**, xxx *in press*, cond-mat/0503190; Lu Li , Eurpophys. Lett. **72**, 451-457 (2005).

¹Current Address: University of California, Berkekey

Lu Li Physics Department, Princeton University

Date submitted: 31 Jan 2006

Electronic form version 1.4