Magnetization curves in underdoped cuprates measured at low T in fields up to 45 Tesla

LU LI, YAYU WANG, Physics Department, Princeton University, MIKE NAUGHTON, Boston College, S. ONO, YOICHI ANDO, Central Research Inst., Electric Power Industry, Tokyo, NAI PHUAN ONG, Physics Department, Princeton University — Torque magnetometry is capable of resolving the weak diamagnetic which extends to temperatures $T \gg T_c$ in hole-doped cuprate crystals. Recently, we reported that the magnetization M above T_c scales accurately as the Nernst signal e_N and remains robust to fields of 33 T. The results strongly support the scenario in which thermally created vortices destroy long-range phase coherence at T_c. We have extended these studies to explore the fluctuation magnetization to 45 T in underdoped LSCO and Bi 2201 in a series of samples doped near the critical value $x_c \sim 0.055$. We investigate the loss of phase coherence as we decrease x below x_c keeping T as low as 0.5 K. We use the $M-H$ curves to explore how singular phase fluctuations occur as superfluidity is destroyed when x approaches the insulating Mott limit at low T.

*Supported by NSF grant (DMR 0213706).

1Current Address: University of California, Berkeley