Quantum Monte Carlo calculations of BiScO$_3$ ferroelectric well-depths1 HENDRA KWEE, College of William and Mary, HENRY KRAKAUER, College of William and Mary, SHIWEI ZHANG, College of William and Mary — The perovskite (1-x) BiScO$_3$-x PbTiO$_3$ alloy has been reported as having a large piezoelectric properties.2 Density functional theory (DFT) using local density approximation (LDA) predicts an extraordinarily large ferroelectric well depths (about 1.2 eV) of the end point compound BiScO$_3$.3 We perform quantum Monte Carlo calculations on BiScO$_3$ to calculate these well depths. In our QMC method,4 the two-body terms coming from electron-electron interactions are decoupled using a Hubbard-Stratonovich transformation. The ground state is obtained from projection of an initial trial wave function by random walks in Slater determinant space. To control the sign/phase problem, a trial Slater determinant is used, which in our calculations is taken directly from the DFT calculations. We find in the QMC calculation large finite-size effects in the primitive cell, on the order of a few eV. We study these finite-size effects and explore several schemes to reduce them.

1Supported by ONR, DOE/CMSN, ORNL Natl. Cent. Comput. Sci., CPD

Hendra Kwee
College of William and Mary

Date submitted: 30 Nov 2005

Electronic form version 1.4