Density-Functional Study of Au_n^- $(n = 16 - 24)$: Atomic and Electronic Structures and Interaction with O_2 BOKWON YOON, UZI LANDMAN, Georgia Institute of Technology, PEKKA KOSKINEN, MICHAEL MOSELER, Fraunhofer Institute for Mechanics of Materials, HANNU HAKKINEN, University of Jyvaskyla — Anionic gold clusters with 16 to 24 atoms are studied using the Born-Oppenheimer local-spin-density molecular dynamics method. The structures of the ground-state clusters and energetically lowest-lying isomers are 3-dimensional, while the ground-state structures of smaller Au_n^- with up to 14 atoms were reported to be planar (Häkkinen, et al., J. Chem. Phys. 117, 6982 (2002)). The calculated vertical electron detachment energies ($v\text{DE}$) are in good agreement with the experimental results (Taylor, et al., J. Chem. Phys. 98, 3319 (1992)); $v\text{DE}$’s are smaller for even n’s and larger for odd n’s, with the exception of $n = 16$. Compared to the other even-numbered clusters, Au_{16}^- exhibits relatively large $v\text{DE}$, $v\text{DE}(\text{Au}_{16}^-)$=4.03 eV. The smallest $v\text{DE}$ is measured for $n = 20$, $v\text{DE}(\text{Au}_{20}^-)$=2.71 eV, The adsorption of O_2 to Au_n^- is also sensitive to the cluster size; the O_2 adsorption is relatively strong for the even-numbered clusters with the exception of Au_{16}^-. The O_2 binding energy, the intramolecular bond-length of O_2, and the excess charge on O_2 correlate strongly with the vertical electron detachment energy of Au_n^-.

Bokwon Yoon
Georgia Institute of Technology

Date submitted: 02 Dec 2005

Electronic form version 1.4