Density-Functional Study of Au$_n^-$ ($n = 16 - 24$): Atomic and Electronic Structures and Interaction with O$_2$

BOKWON YOON, UZI LANDMAN, Georgia Institute of Technology, PEKKA KOSKINEN, MICHAEL MOSELER, Fraunhofer Institute for Mechanics of Materials, HANNU HAKKINEN, University of Jyvaskyla — Anionic gold clusters with 16 to 24 atoms are studied using the Born-Oppenheimer local-spin-density molecular dynamics method. The structures of the ground-state clusters and energetically lowest-lying isomers are 3-dimensional, while the ground-state structures of smaller Au$_n^-$ with up to 14 atoms were reported to be planar (Häkkinen, et al., J. Chem. Phys. 117, 6982 (2002)). The calculated vertical electron detachment energies (vDE) are in good agreement with the experimental results (Taylor, et al., J. Chem. Phys. 98, 3319 (1992)); vDE’s are smaller for even n’s and larger for odd n’s, with the exception of $n = 16$. Compared to the other even-numbered clusters, Au$_{16}^-$ exhibits relatively large vDE, vDE(Au$_{16}^-$)=4.03 eV. The smallest vDE is measured for $n = 20$, vDE(Au$_{20}^-$)=2.71 eV. The adsorption of O$_2$ to Au$_n^-$ is also sensitive to the cluster size; the O$_2$ adsorption is relatively strong for the even-numbered clusters with the exception of Au$_{16}^-$. The O$_2$ binding energy, the intramolecular bond-length of O$_2$, and the excess charge on O$_2$ correlate strongly with the vertical electron detachment energy of Au$_n^-$.

Bokwon Yoon
Georgia Institute of Technology

Date submitted: 02 Dec 2005

Electronic form version 1.4