Electrode fabrication and attachment of organometallic molecules for conductivity measurements

S. RAJAGOPAL, Physics Department, Miami University, Oxford, OH, N. SMITH, Physics Department, Miami University, Oxford, OH, J.M. YARRISON-RICE, Physics Department, Miami University, Oxford, OH, C. URIG, T. SCOTT, S. ZOU, H. ZHOU, Department of Chemistry and Biochemistry, Miami University, Oxford, OH — The primary goal of this research is to understand the bonding and electronic structure within this class of compounds and the influence of a gated electric field on their conductivity. We report an approach for connecting a single molecule containing di-metal units to electrodes with nanometer gaps. We have successfully fabricated pairs of terminal electrodes with initial gaps of \(\sim 75 \) nm which we then close using electrodeposition and re-open with electromigration to nanometer gaps. The results of the time resolved voltage curve during the electrodeposition process show that most of electrodes have a very short closing time. We have also fabricated lateral three terminal devices for studying the influence of a gated third electrode. The present results show that a gap to gate distance of less than 50nm is achievable. Our next step is to deposit molecules on the thin gap, and to measure the electrical conductivity when a single molecule bridges the gap and conducts current.

\(^1\)We gratefully acknowledge NSF through the NER - award \#0403669.
\(^2\)Now at: ECECS, University of Cincinnati, Cincinnati, OH