Abstract Submitted for the MAR06 Meeting of The American Physical Society

Magnetism in Fe_4Al_{13} and related FeAl intermetallics JI CHI, YANG LI, WEIPING GOU, V. GORUGANTI, K. D. D. RATHNAYAKA, JOSEPH H. ROSS, JR., Department of Physics, Texas A&M University — We report the results of an experimental study of FeAl alloys, including Fe₄Al₁₃, FeAl₂ and Fe₂Al₅. By using NMR, dc magnetic susceptibility, and specific heat, we found that Fe₄Al₁₃ and Fe₂Al₅ are non-magnetic with some dilute magnetic moments, while FeAl₂ can be characterized as a concentrated local moment system. Fe₄Al₁₃ is a decagonal quasicrystal approximant with 102 atoms in its unit cell. The $^{27}\mathrm{Al}$ NMR spin-lattice relaxation indicates a very narrow pseudogap in the electronic density of states [q(E)] in the vicinity of the Fermi energy. The observations could be fit assuming a parabolic variation of g(E), consistent with observations in other quasicrystals and approximants. NMR lineshape measurements also agree with this analysis, and show that the system is dilute-magnetic, in strong contrast to the FeAl₂ ordered intermetallic. We use specific heat to analyze the dilute moment density. This work was supported by the Robert A. Welch Foundation, Grant No. A-1526, by the National Science Foundation (DMR-0103455), and by Texas A&M University through the Telecommunications and Informatics Task Force.

> Joseph Ross Texas A&M University

Date submitted: 05 Dec 2005 Electronic form version 1.4