The spin susceptibility in Si-MOSFETs. MARIAPIA MARCHI, Democritos-INFM and Universita’ di Trieste, DE PALO STEFANIA, Democritos-INFM, SAVERIO MORONI, Democritos-INFM, GAETANO SENATORE, Democritos-INFM and Universita’ di Trieste — We have performed for the first time DMC simulations of a symmetric two-valley electron gas with variable spin polarization, both in the strictly 2D limit and with a thickness appropriate to Si-MOSFETs. We find that valley degeneracy substantially reduces the spin susceptibility enhancement α, with respect to the conventional 2DEG. The farther reduction of α, caused by thickness, brings our prediction in excellent agreement with the available experimental data on Si-MOSFETs[1] up to $r_s \approx 5$. The agreement extends to the full experimental range ($r_s \leq 8$) when weak disorder is kept into account within a response function formalism, generalizing to the two valley system the approach previously employed for the conventional 2DEG [2]. [1] See, e.g, S.V. Kravchenko and M.P. Sarachik, Rep. Prog. Phys. 67, 1 (2004) and references therein. [2] S. De Palo et. al., Phys. Rev. Lett. 94, 226405 (2005).