Study of Atoms and Molecules with Auxiliary-Field Quantum Monte Carlo

WIRAWAN PURWANTO, MALLIGA SUEWATTANA, HENRY KRAKAUER, SHIWEI ZHANG, ERIC J. WALTER, College of William and Mary, VA — We study the ground-state properties of second-row atoms and molecules using the phaseless auxiliary-field quantum Monte Carlo (AF QMC) method. This method projects the many-body ground state from a trial wave function by means of random walks in the Slater-determinant space. We use a single Slater-determinant trial wave function obtained from density-functional theory (DFT) or Hartree-Fock (HF) calculations. The calculations were done with a plane-wave basis and supercells with periodic boundary condition. We investigate the finite-size effects and the accuracy of pseudopotentials within DFT, HF, and AF QMC frameworks. Pseudopotentials generated from both LDA (OPIUM) and HF are employed. We find that the many-body QMC calculations show a greater sensitivity to the accuracy of the pseudopotentials. With reliable pseudopotentials, the ionization potentials and dissociation energies obtained using AF QMC are in excellent agreement with the experimental results.

1Supported by DOE CMSN. Computing was done in CPD and NCSA.
2Currently at Oak Ridge National Lab, TN
4http://opium.sourceforge.net