Cryogenic Pulsed Laser Deposition of Lithium for $^4$He Absorption Experiments

E. VAN CLEVE, P. TABOREK, J.E. RUTLEDGE, University of California, Irvine — We are developing techniques to prepare films of alkali metals on cryogenic surfaces by laser ablation. The alkali metals are known to provide weak adsorption potentials for $^4$He which results in nontrivial wetting and superfluid onset phenomena. Film preparation technique strongly affects some $^4$He wetting properties as has been seen in contact angle measurements of $^4$He on Cs surfaces. Of particular interest are Li surfaces which at low temperatures are predicted (1) to be superfluid with less than monolayer total $^4$He coverage. We have grown Li films on using 532 nm light from an Nd-YAG laser on to room temperature quartz crystal microbalances (QCM). We will present measurements of film growth rate as a function of the laser fluence. Preliminary $^4$He isotherm measurements on Li films laser ablated onto 4K QCMs will be compared with adsorption isotherms on the heavier alkali metal surfaces.