Abstract Submitted for the MAR06 Meeting of The American Physical Society

Molecular Beam Epitaxy of $Fe_3Ga/Ga_{1-x}Al_xAs$ Heterostructures: Growth, Properties and Spin Transport C. J. PALMSTRØM, C. ADEL-MANN, X. LOU, S. K. SRIVASTAVA, P. A. CROWELL, University of Minnesota — Single crystal Fe₃Ga thin films have been grown on $Ga_{1-x}Al_xAs$ (001) by molecular beam epitaxy. The films are found to be pseudomorphic on $Ga_{1-x}Al_xAs$ and grow in a tetragonally-distorted Heusler-like D0₃ crystal structure. The Fe₃Ga films are ferromagnetic above room temperature with a saturation magnetization of 1200 emu/cm³. They exhibit a perpendicular magnetic anisotropy due to the strain-induced tetragonal distortion. Rutherford backscattering spectrometry finds no interfacial reactions of Fe₃Ga/GaAs heterostructures, suggesting that Fe₃Ga is thermally stable on GaAs. Spin injection from Fe₃Ga into GaAs has been assessed by using $Fe_3Ga/Ga_{1-x}Al_xAs$ spin light-emitting diode (LED) structures. A steadystate spin polarization of 20% is obtained at 2K. The bias dependence of spin injection is found to be very similar to that of $Fe/Ga_{1-x}Al_xAs$ spin LEDs [1]. This work was supported in part by ONR and NSF-MRSEC. [1] C. Adelmann et al., Phys. Rev. B **71**, 121301 (2005).

> Chris Palmstrøm University of Minnesota

Date submitted: 30 Nov 2005 Electronic form version 1.4