Abstract Submitted for the MAR06 Meeting of The American Physical Society

Fabrication and Electrical Measurements of CoFe₂O₄ Nanopillars in a BiFeO₃ matrix¹ SCOTT RUTHERFORD², University of Wisconsin - Madison, RASMI DAS³, University of Wisconsin - Madison, XIANGLIN KE⁴, University of Wisconsin - Madison, DMITRY RUZMETOV, Northwestern University, DONG-MIN KIM⁵, University of Wisconsin - Madison, SEUNG HYUB BAEK⁶, University of Wisconsin - Madison, MARK RZCHOWSKI7, University of Wisconsin - Madison, CHANG-BEOM EOM⁸, University of Wisconsin - Madison, CHANG-BEOM EOM COLLABORATION, MARK RZCHOWSKI COLLABORATION, NORTHWEST-ERN UNIVERSITY COLLABORATION — Coupling between ferromagnetic and ferroelectric ordering has recently stimulated many scientific and technological interests. This "coupling", would provide an additional degree of freedom in the design of micro and nano-electronic devices such as actuators, transducers, or memories. Unfortunately, the clamping effect of the substrate negates any such magnetoelectric coupling through elastic interactions which evident in a multilayer structures. Therefore our focus is directed towads the design of a novel vertically aligned oxide nano-structures, which will allow us to switch the magnetic domains by applying the electric field and vice versa. These nano-structures will also be used as model system to understand the physics of order parameter coupling in ferroelctric and ferromagnetic systems. We have fabricated ferromagnetic nanopillar arrays of $CoFe_2O_4$ (CFO), surrounded by a ferroelectric BiFeO₃ (BFO) and BaTiO₃ matrix. 90° off-axis sputtering is used to deposit SrRuO₃ (SRO), followed by CFO on single surface TiO_2 -terminated $SrTiO_3$ (001) substrates. SRO provides a good lattice match and electrode capabilities for the subsequent deposition of CFO. E-beam patterning defines pillar dimensions and spacing, while ion milling etches down to the SRO layer. The pillar dimensions range between 100 nm and 500 nm in diameter and are spaced 0.5 to 1 μ m apart. Atomic force microscopy and scanning electron microscopy measurements confirm the structure of the pillars following the pattering and etching steps. The BFO ferroelectric matrix is then deposited by on-axis sputtering. Fabrication of these pillars along with piezo force micrcroscopy and magnetic

Date submitted: 30 Nov 2005 used to understand the microstructure and domain switching. The detailed scanning probe measurements of domain switching in these novel oxide nanostructures will be discussed.

 $^1\mathrm{Fabrication}$ and Electrical Measurements of CoFe2O4 Nanopillars in a BiFeO3 matrix

²Materials Science Department

³Materials Science Department

⁴Physics Department

⁵Materials Science Department

- ⁶Materials Science Department
- ⁷Physics Department
- ⁸Materials Science Department