Field-Induced Quantum Criticality in a Two-Dimensional Antiferromagnet

TAO HONG, MICHEL KENZELMANN, MATTHEW BOULOUBASIS, DANIEL REICH, COLLIN BROHOLM, Johns Hopkins University, MATTHEW STONE, Oak Ridge National Laboratory, EMILY DUNKEL, SUBIR SACHDEV, Harvard University — We describe neutron scattering measurements on the two-dimensional spin gap antiferromagnet piperanizium hexachlorodicuprate (PHCC) in the vicinity of quantum critical point at which the spin gap is closed by an applied magnetic field. We measure the energy and damping of the propagating $S_z = 1$ mode above the spin gap; both quantities become strongly temperature dependent at the critical field. The temperature dependence of the mode energy is successfully described by a self-consistent Hartree-Fock theory of interacting spin excitations.

1Work at the Johns Hopkins University was supported by the NSF under Grants No. DMR-0306940. Work at Harvard University was supported by NSF under Grants No. DMR-0537077. Work at NCNR was supported by NSF under Grants No. DMR-0086210