Abstract Submitted for the MAR06 Meeting of The American Physical Society

Large temperature renormalization of anomalous Luttinger exponent in $Li_{0.9}Mo_6O_{17}^1$ FENG WANG, S.-K. MO, J.W. ALLEN, J.V. ALVAREZ, U. of Michigan, G.-H. GWEON, Lawrence Berkeley National Lab, J. HE, U. of Tennessee, R. JIN, R. MANDRUS, Oak Ridge National Lab, H. HOCHST, SRC, U. of Wisconsin — $Li_{0.9}Mo_6O_{17}$ is unique as a quasi-1 dimensional metal for which both photoemission spectroscopy (PES) [1] and tunneling [2] find Luttinger liquid (LL) power law behaviors in spectra near the Fermi energy E_F , albeit with differing values of the anomalous exponent $\alpha_{,} \approx 0.9$ at temperature 300K and ≈ 0.6 below 50K, respectively. New T-dependent PES spectra from T = 300K down to 15K can be well fit by finite-T LL theory, with α varying continuously from ≈ 0.9 to ≈ 0.6 , showing consistency of PES and tunneling. We find that its incommensurate Fermi wavevector would preclude such a large renormalization of α with T for $Li_{0.9}Mo_6O_{17}$ were it not for interband dynamics and residual interaction scattering that can occur only because there are two (nearly degenerate) bands crossing E_F . We also discuss implications of the theory for further experiments. [1] G.-H. Gweon et al, Phys. Rev. B 68, 195117 (2003). [2] J. Hager et al, Phys. Rev. Lett. 95, 186402 (2005).

¹Supported at U. Mich. by the U.S. NSF Grant(DMR-03-02825)

Feng Wang University of Michigan

Date submitted: 01 Dec 2005

Electronic form version 1.4