A realistic approach to effective Hamiltonians for strongly correlated electron materials: Study of orbital ordering in LaMnO$_3$1 WEI-GUO YIN, DMITRI VOLJA, WEI KU, Condensed Matter Physics & Materials Science Department, Brookhaven National Laboratory, Upton, NY 11973 — We present a general scheme to the realistic derivation of many-body effective Hamiltonians, H^{eff}, for strongly correlated electron systems: Based on a novel Wannier state analysis of the LDA+U electronic structure, relevant mechanisms can be clearly singled out and their strengths can be accurately determined by mapping H^{eff} to the low-energy LDA+U Hamiltonian within self-consistent Hartree-Fock mean-field theory \cite{1}. Applying this scheme to LaMnO$_3$, the parent compound of colossal magnetoresistance manganites, we have quantified the relative importance of the effective electron-electron interaction (~ 1.7 eV) and the Jahn-Teller splitting (~ 0.9 eV) in ordering orbitals in LaMnO$_3$. We find that beyond the conventional Jahn-Teller picture, the electron-lattice (electron-electron) interaction alone is insufficient (sufficient) to stabilize the orbital ordering. Furthermore, our analysis indicates certain competition between different mechanisms, allowing direct experimental determination of their relative strengths. \cite{1} W.-G. Yin, D. Volja, and W. Ku, cond-mat/0509075.

1Work supported U.S. DOE.

Wei-Guo Yin
Condensed Matter Physics & Materials Science Department,
Brookhaven National Laboratory, Upton, NY 11973

Date submitted: 06 Jan 2006

Electronic form version 1.4