Towards a 160 kBit molecular electronic memory at 10^{11} Bits/cm2 JONATHAN GREEN, J.W. CHOI, E. JOHNSTON-HALPERIN, E. DEIONNO, Y. LUO, A. BOUKAI, Y. BUNIMOVICH, B.A. SHERIFF, J.R. HEATH, Division of Chemistry and Chemical Engineering, The California Institute of Technology, Pasadena, CA — Since its inception by Aviram and Ratner in 1974, molecular-based electronics has emerged as a promising alternative to scaled CMOS technology and its eventual integration limit. Here we present progress towards an electronically configurable, molecule-based 160,000 Bit random access memory at a Bit density approaching 10^{11} Bits/cm2. This device is based on a cross-bar architecture in which the active switching elements are bi-stable [2]-rotaxane supramolecules sandwiched between perpendicular arrays of SNAP-fabricated [1] metallic and n-Si nanowires at 34 nm pitch. Challenges in memory fabrication and testing will be discussed. [1] Science 300, 112 (2003); J. App. Phys. 96, 5921 (2004).

1Funding provided by DARPA

Jonathan Green
Caltech

Date submitted: 30 Nov 2005

Electronic form version 1.4