Preparation and Characterization of a Superparamagnetic Polymer Nanocomposite

N. BRENNER, R. ISSEROFF, Lawrence High School, Cedarhurst, NY, M. RAFAILOVICH, G. RUDOMEN, R. GAMBINO, S.S. LIANG, D. SUNIL, M. SI, L. COLLAZO, N. PERNODET, X. FANG — Fe(CO)$_5$ decomposition produced ferro- and superparamagnetic polymer nanocomposites. Fe(CO)$_5$ and Cloisite 20A clay were combined in a closed vial for 12 hours, then opened to air for 2 hours. Mössbauer analysis indicated formation of Fe$_2$O$_3$ on clay; mass analysis indicated 12% Fe in clay. A Brabender mixed Fe$_2$O$_3$/clays with PMMA and EVA at ratios by mass of 9:4:36 and 1:1:4 respectively (Fe(CO)$_5$:clay:polymer). TEM displayed Fe$_2$O$_3$ nanoparticles, 3.3\pm 0.8 nm in diameter, adsorbed on exfoliated clay platelet surfaces in polymer matrices. VSM data indicated superparamagnetism with moments of 510.3 emu/g(Fe$_2$O$_3$) (PMMA) and 8.46 emu/g(Fe$_2$O$_3$) (EVA). DMA showed 37% decreased dynamic modulus (EVA) and 11% (PMMA) due to Fe$_2$O$_3$. TGA indicated PMMA stability to 400°C (9.3% mass residual) and EVA to 435°C (11% mass residual). Cell adhesion tests showed Fe$_2$O$_3$/clay enhanced proliferation, promising applications in bone implants.

Radha Ramasamy
Stony Brook University

Date submitted: 06 Dec 2005

Electronic form version 1.4