Abstract Submitted for the MAR06 Meeting of The American Physical Society

Criticality of morphological instability of a strained film growing on a patterned substrate¹ HANGYAO WANG, FENG LIU, University of Utah — We show that the morphological instability of a strained film on a patterned substrate is fundamentally different from that on a flat substrate. It exhibits a film thickness (t) dependent critical wavelength, which takes a simple form as $\lambda_c = \lambda_0/2 + \pi t$ for a very thin film, where λ_0 is the critical wavelength on a flat substrate. It also defines three distinct regimes of growth stability depending on the wavelength of substrate undulation (λ_s): for $\lambda_s \leq \lambda_0/2$, growth is stable; for $\lambda_s \geq \lambda_0$, growth is unstable; in between, growth is unstable below a critical film thickness t_c , and stable above it.

¹This work is supported by DOE

Feng Liu University of Utah

Date submitted: 11 Jan 2006

Electronic form version 1.4