Surface Modification of CMR Perovskite Manganese Thin Films using Atomic Force Microscopy

DAVID SCHAEFER, RAJESWARI KOLAGANI, CAMERON BOLLING, JOHN SUNDERLAND, ANTHONY DAVIDSON III, Towson University, TYLER BRADLEY, Towson High School, BONNIE LUDKA, James Madison University, TOWSON UNIVERSITY TEAM, TOWSON HIGH SCHOOL TEAM, JAMES MADSION UNIVERSITY TEAM — Nanolithography using the atomic force microscope (AFM) is emerging as a promising tool for nanotechnology. We report our results of AFM-induced nanoscale surface modifications in thin films of the CMR manganese material La$_{0.7}$Ba$_{0.3}$MnO$_3$. CMR manganese materials have been demonstrated to be useful for a variety of technological applications including magnetic sensors and bolometric infrared detectors. AFM induced surface modifications would enable the realization of such sensors in nanotechnology applications. We have obtained reproducible patterns on these films in the form of nanoscale dots and lines induced by the AFM tip. We have studied these feature dimensions as a function of tip bias voltage, exposure time and humidity. We find that the feature heights are considerably larger on manganese thin film surfaces than those induced on silicon surface under similar conditions. Additionally, the speed of reproducible writing is also found to be significantly higher on the manganese films.

Rajeswari Kolagani
Towson University

Date submitted: 06 Dec 2005