Exploring electron transport through organic monolayers using conductive tip AFM techniques

DENIS SCAINI, Synchrotron Trieste, Trieste, Italy; Department of Physics, University of Trieste, Trieste, Italy, MATTEO CASTRONOVO, Department of Physics, University of Trieste, Trieste, Italy, MARTINA DELL’ANGELA, Synchrotron Trieste, Trieste, Italy, ROBERT HUDEJ, Synchrotron Trieste, Trieste, Italy, MATTEO CASTRONOVO, Department of Physics, University of Trieste, Trieste, Italy; International School for Advanced Studies (ISAS), Trieste, Italy, LOREDANA CASALIS, Synchrotron Trieste, Trieste, Italy, GIACINTO SCOLES, Synchrotron Trieste, Trieste, Italy; International School for Advanced Studies (ISAS), Trieste, Italy; Princeton University, Princeton, NJ — We follow an alternative approach to the study of Metal-molecule-Metal junctions that uses a combination of two atomic force microscopy (AFM) techniques. We use Nanografting to build a nanopatch of the molecules of interest and a second made of a reference molecule into a hosting self assembled monolayer (SAM) typically made of alkanethiols. After the tip is changed to a conductive one CT-AFM is used to characterized the whole system recording, at the same time, the system topography. Some of the advantages of this approach are the possibility to build and study a wide range of different M-m-M junctions and the in-situ control of the quality of the monolayers and patches. Results will be presented on saturated and unsaturated thiols self-assembled and nanografted on Au(111) surfaces. The results will be compared with those obtained by Liang and Scoles at Princeton using similar techniques.

Denis Scaini
Synchrotron Trieste, Trieste, Italy; Department of Physics, University of Trieste, Trieste, Italy

Date submitted: 02 Dec 2005

Electronic form version 1.4