Abstract Submitted for the MAR06 Meeting of The American Physical Society

Spatial and pulse shape dependence of $K\alpha$ source from high contrast fs laser plasmas in regime of Relativistic Engineering LIMING CHEN, Advanced Photon Research Center, Japan Atomic Energy Agency — Interaction of intense Ti: Sapphire laser with Cu foil targets has been studied by measuring hard X-ray generation. Hard x-ray spectroscopy and K α X-ray conversion efficiency (η_K) from Cu plasma have been studied as a function of laser intensity via pulse duration scan (60 fs ~ 600 fs), laser pulse energy scan (60 mJ ~ 600 mJ) and target displacement scan from best focus. For intensity $I > 1x10^{17} W/cm^2$, the Cu η_K keep on increasing to reach a maximum value of $1x10^{-4}$ at an intensity $I = 1x10^{18} W/cm^2$. The focusing was varied widely to give a range of intensities from $10^{15}~W/cm^2 \sim$ $10^{18} W/cm^2$. Two individual emission peaks are obtained, one is at best focal spot and the other is at larger target offset corresponding to $\sim 10^{15} W/cm^2$. Each peak is corresponding to different energy absorption mechanism. In addition, when we introduce slightly detuning of compressor gratings at the best focal condition, it shows η_K generated by negatively skewed 100 fs pulse width laser irradiation reach $5x10^{-4}$ and almost 7 times greater than the case of positively skewed pulse. Vacuum Heating is greatly stimulated in this case and preciously control of pre-plasma is the key factor in tuning control of X-ray emission in relativistic fs regime.

> Liming Chen Advanced Photon Resaerch Center, Japan Atomic Energy Agency

Date submitted: 07 Dec 2005

Electronic form version 1.4