Structural changes in \(\text{Bi}_2\text{Te}_3 \) under pressure.\(^1\) MATHEW JACOBSEN, RAVHI KUMAR, ANDREW CORNELIUS, HiPSEC and Dep.Physics, University of Nevada Las Vegas, PETER LIERMANN, HPCAT, Argonne National Laboratory — \(\text{Bi}_2\text{Te}_3 \) based compounds continue to receive intense research activities due to the enhanced figure of merit observed in the super lattice structure with \(\text{Sb}_2\text{Te}_3 \) [1]. Synthesis of different chemical compositions with varying particle sizes and doping has gained importance subsequently. The thermo electric properties of the new compositions strongly depend on the structure and \(\text{P-T} \) phase diagram of the parent compound \(\text{Bi}_2\text{Te}_3 \). In order to understand the structural properties of \(\text{Bi}_2\text{Te}_3 \) in detail, we have performed pressure studies up to 30GPa using in situ angle dispersive and energy dispersive x-ray diffraction techniques using a diamond anvil cell with different pressure media. \(\text{Bi}_2\text{Te}_3 \) is found to undergo pressure induced structural transition around 7.8 GPa to a new high pressure phase from the ambient rhombohedral phase. This transition is found to be completely reversible with a large hysteresis observed during downloading. The details of the high pressure phase and the pressure medium dependence of the transition will be discussed further. [1]. Venkatasubramanian et al., Nature, 413, 597 (2001)

\(^1\)Financial support from DOE is acknowledged.