Abstract Submitted for the MAR06 Meeting of The American Physical Society

Attractions Between Like-Charged Walls Via Local Molecular Field Theory¹ JOCELYN M. RODGERS, CHARANBIR KAUR², YNG-GWEI CHEN³, JOHN D. WEEKS, University of Maryland, College Park — A simple model used to explore the interaction between like-charged macroions as mediated by intervening counterions is treated with local molecular field theory (LMF). LMF has recently been extended to general Coulombic systems by splitting the Coulomb potential 1/r into a short-ranged core that can be explicitly simulated and a longranged portion treated using a mean field approach; the potential separation is determined by a physically-relevant spacing parameter σ . Here we show that LMF can treat the two-wall model system surprisingly well using an analytical Poisson-Boltzmann type technique. Also, combining self-consistent solution of LMF with simulation of the short-ranged core particles using the minimum image convention yields even more accurate results without using costly and complex Lekner or Ewald sums.

¹Thanks to NSF grant and NDSEG fellowship ²Now at University of Texas ³Now at NIH

Jocelyn Rodgers

Date submitted: 11 Jan 2006

Electronic form version 1.4