MAR06-2006-040289

Abstract for an Invited Paper for the MAR06 Meeting of the American Physical Society

Sodium Ion Ordering in double-layered and triple-layered $Na_x CoO_2$

HENNY ZANDBERGEN, Dept. of Chemistry and Princeton Materials Inst., Princeton University; National Centre for HREM, Dept. of Nanoscience, Delft University of Technology

The layered sodium cobalt oxide Na_xCoO_2 is studied by electron diffraction for a wide range of sodium contents, 0.15 < x < 0.75. This range in compositions is obtained by removal of Na by various methods for the starting materials $Na_{0.7}CoO_2$, and $Na_{1.0}CoO_2$ The structure of Na_xCoO_2 is based the stacking of triangular O-Co-O layers with Na planes. The Co atoms are in edge-sharing CoO_6 octahedra. For the starting compound $Na_{0.7}CoO_2$, the Na^+ ions are in a trigonal prismatic coordination whereas for $Na_{1.0}CoO_2$ the Na^+ coordination is octahedral. Prismatic coordination occurs when the close packed oxygen planes directly adjacent to the Na plane have the same projection into the basal plane (A-Na-A), whereas octahedral coordination of Na occurs when the directly adjacent oxygen planes have different projections (A-Na-B) into the basal plane. Due to this difference in stacking the a axis is about 1.08 nm and 1.65 nm for $Na_{0.7}CoO_2$ and $Na_{1.0}CoO_2$ respectively. For $Na_{0.7}CoO_2$ as well as $Na_{1.0}CoO_2$ as series of superstructures are observed, which can be explained with ordered Na ion-Na vacancy superlattices. The structural principle for some of the observed ordering schemes, particularly near x=0.5, is, surprisingly, the presence of lines of Na ions and vacancies rather than simply maximized Na-Na separations. With $Na_{0.7}CoO_2$ as starting material, the most strongly developed superlattice is found for the composition $Na_{0.75}CoO_2$ and $Na_{0.5}CoO_2$. In particular the superstructure $Na_{0.75}CoO_2$ of is very complicated.

In collaboration with M.L. Foo, Department of Chemistry and Princeton Materials Institute, Princeton University, Princeton, NJ 08544 USA; Q. Xu and V. Kumar, National Centre for HREM, Department of Nanoscience, Delft University of Technology, Rotterdamseweg 137, 2628 AL Delft, The Netherlands; L. Viciu, Department of Chemistry and Princeton Materials Institute, Princeton University; Q. Huang, NIST Center for Neutron Research, NIST, Gaithersburg, MD 20899; and R.J. Cava, Department of Chemistry and Princeton Materials Institute, Princeton University.